
In this Chapter
 » Introduction to Files
 » Types of Files
 » Opening and Closing a

Text File
 » Writing to a Text File
 » Reading from a Text File
 » Setting Offsets in a File
 » Creating and Traversing a

Text File
 » The Pickle Module

Chapter

2.1 IntroductIon to FIles

We have so far created programs in Python that
accept the input, manipulate it and display the
output. But that output is available only during
execution of the program and input is to be
entered through the keyboard. This is because the
variables used in a program have a lifetime that
lasts till the time the program is under execution.
What if we want to store the data that were input
as well as the generated output permanently so
that we can reuse it later? Usually, organisations
would want to permanently store information
about employees, inventory, sales, etc. to avoid
repetitive tasks of entering the same data. Hence,
data are stored permanently on secondary storage
devices for reusability. We store Python programs
written in script mode with a .py extension. Each
program is stored on the secondary device as a
file. Likewise, the data entered, and the output
can be stored permanently into a file.

2 File Handling in
Python

There are many ways of trying to understand
programs. People often rely too much on one way, which

is called "debugging" and consists of running a partly-
understood program to see if it does what you expected.

Another way, which ML advocates, is to install some means of
understanding in the very programs themselves.

— Robin Milner

Chapter 2.indd 19 18-Jun-21 2:29:01 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon20

So, what is a file? A file is a named location on a
secondary storage media where data are permanently
stored for later access.

2.2. types oF FIles

Computers store every file as a collection of 0s and 1s
i.e., in binary form. Therefore, every file is basically just
a series of bytes stored one after the other. There are
mainly two types of data files — text file and binary
file. A text file consists of human readable characters,
which can be opened by any text editor. On the other
hand, binary files are made up of non-human readable
characters and symbols, which require specific programs
to access its contents.

2.2.1 Text file
A text file can be understood as a sequence of characters
consisting of alphabets, numbers and other special
symbols. Files with extensions like .txt, .py, .csv, etc.
are some examples of text files. When we open a text file
using a text editor (e.g., Notepad), we see several lines
of text. However, the file contents are not stored in such
a way internally. Rather, they are stored in sequence
of bytes consisting of 0s and 1s. In ASCII, UNICODE or
any other encoding scheme, the value of each character
of the text file is stored as bytes. So, while opening a
text file, the text editor translates each ASCII value
and shows us the equivalent character that is readable
by the human being. For example, the ASCII value 65
(binary equivalent 1000001) will be displayed by a text
editor as the letter ‘A’ since the number 65 in ASCII
character set represents ‘A’.

Each line of a text file is terminated by a special
character, called the End of Line (EOL). For example,
the default EOL character in Python is the newline
(\n). However, other characters can be used to indicate
EOL. When a text editor or a program interpreter
encounters the ASCII equivalent of the EOL character,
it displays the remaining file contents starting from a
new line. Contents in a text file are usually separated
by whitespace, but comma (,) and tab (\t) are also
commonly used to separate values in a text file.

Activity 2.1

Create a text file using
notepad and write
your name and save it.
Now, create a .docx file
using Microsoft Word
and write your name
and save it as well.
Check and compare
the file size of both the
files. You will find that
the size of .txt file is
in bytes whereas
that of .docx is in
KBs.

Text files contain
only the ASCII

equivalent of the
contents of the
file whereas a

.docx file contains
many additional
information like

the author's name,
page settings, font
type and size, date

of creation and
modification, etc.

Chapter 2.indd 20 18-Jun-21 2:29:02 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon 21

The file_object
establishes a

link between the
program and the
data file stored

in the permanent
storage.

2.2.2 Binary Files
Binary files are also stored in terms of bytes (0s and 1s),
but unlike text files, these bytes do not represent the
ASCII values of characters. Rather, they represent the
actual content such as image, audio, video, compressed
versions of other files, executable files, etc. These files
are not human readable. Thus, trying to open a binary
file using a text editor will show some garbage values.
We need specific software to read or write the contents
of a binary file.

Binary files are stored in a computer in a sequence
of bytes. Even a single bit change can corrupt the file
and make it unreadable to the supporting application.
Also, it is difficult to remove any error which may occur
in the binary file as the stored contents are not human
readable. We can read and write both text and binary
files through Python programs.

2.3 openIng and closIng a text FIle

In real world applications, computer programs deal
with data coming from different sources like databases,
CSV files, HTML, XML, JSON, etc. We broadly access
files either to write or read data from it. But operations
on files include creating and opening a file, writing data
in a file, traversing a file, reading data from a file and
so on. Python has the io module that contains different
functions for handling files.

2.3.1 Opening a file
To open a file in Python, we use the open() function. The
syntax of open() is as follows:

 file_object= open(file_name, access_mode)

This function returns a file object called file handle
which is stored in the variable file_object. We can
use this variable to transfer data to and from the file
(read and write) by calling the functions defined in the
Python’s io module. If the file does not exist, the above
statement creates a new empty file and assigns it the
name we specify in the statement.

The file_object has certain attributes that tells us
basic information about the file, such as:
• <file.closed> returns true if the file is closed and

false otherwise.

Chapter 2.indd 21 18-Jun-21 2:29:02 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon22

• <file.mode> returns the access mode in which the
file was opened.

• <file.name> returns the name of the file.

The file_name should be the name of the file that
has to be opened. If the file is not in the current working
directory, then we need to specify the complete path of
the file along with its name.

The access_mode is an optional argument that
represents the mode in which the file has to be accessed
by the program. It is also referred to as processing mode.
Here mode means the operation for which the file has
to be opened like <r> for reading, <w> for writing, <+>
for both reading and writing, <a> for appending at the
end of an existing file. The default is the read mode. In
addition, we can specify whether the file will be handled
as binary () or text mode. By default, files are opened
in text mode that means strings can be read or written.
Files containing non-textual data are opened in binary
mode that means read/write are performed in terms of
bytes. Table 2.1 lists various file access modes that can
be used with the open() method. The file offset position
in the table refers to the position of the file object when
the file is opened in a particular mode.

Table 2.1 File Open Modes

File Mode Description File Offset position

<r> Opens the file in read-only mode. Beginning of the file

<rb> Opens the file in binary and read-only mode. Beginning of the file

<r+> or <+r> Opens the file in both read and write mode. Beginning of the file

<w> Opens the file in write mode. If the file already exists, all the
contents will be overwritten. If the file doesn’t exist, then a
new file will be created.

Beginning of the file

<wb+> or
<+wb>

Opens the file in read,write and binary mode. If the file
already exists, the contents will be overwritten. If the file
doesn’t exist, then a new file will be created.

Beginning of the file

<a> Opens the file in append mode. If the file doesn’t exist, then
a new file will be created.

End of the file

<a+> or <+a> Opens the file in append and read mode. If the file doesn’t
exist, then it will create a new file.

End of the file

Activity 2.2

Some of the other
file access modes are
<rb+>, <wb>, <w+>,
<ab>, <ab+>. Find out
for what purpose each
of these are used.
Also, find the file
offset positions in
each case.

Consider the following example.
myObject=open(“myfile.txt”, “a+”)

Chapter 2.indd 22 18-Jun-21 2:29:02 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon 23

In the above statement, the file myfile.txt is opened
in append and read modes. The file object will be at the
end of the file. That means we can write data at the end
of the file and at the same time we can also read data
from the file using the file object named myObject.

2.3.2 Closing a file
Once we are done with the read/write operations on a
file, it is a good practice to close the file. Python provides
a close() method to do so. While closing a file, the
system frees the memory allocated to it. The syntax of
close() is:

file_object.close()

Here, file_object is the object that was returned while
opening the file.

Python makes sure that any unwritten or unsaved
data is flushed off (written) to the file before it is closed.
Hence, it is always advised to close the file once our
work is done. Also, if the file object is re-assigned to
some other file, the previous file is automatically closed.

2.3.3 Opening a file using with clause
In Python, we can also open a file using with clause.
The syntax of with clause is:

with open (file_name, access_mode) as file_
object:

The advantage of using with clause is that any file
that is opened using this clause is closed automatically,
once the control comes outside the with clause. In
case the user forgets to close the file explicitly or if an
exception occurs, the file is closed automatically. Also,
it provides a simpler syntax.

with open(“myfile.txt”,”r+”) as myObject:

 content = myObject.read()

Here, we don’t have to close the file explicitly
using close() statement. Python will automatically close
the file.

2.4 WrItIng to a text FIle

For writing to a file, we first need to open it in write or
append mode. If we open an existing file in write mode,
the previous data will be erased, and the file object will
be positioned at the beginning of the file. On the other

notes

Chapter 2.indd 23 18-Jun-21 2:29:02 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon24

hand, in append mode, new data will be added at the
end of the previous data as the file object is at the end of
the file. After opening the file, we can use the following
methods to write data in the file.
• write() - for writing a single string

• writelines() - for writing a sequence of strings

2.4.1 The write() method
write() method takes a string as an argument and writes
it to the text file. It returns the number of characters
being written on single execution of the write() method.
Also, we need to add a newline character (\n) at the end
of every sentence to mark the end of line.

Consider the following piece of code:
>>> myobject=open("myfile.txt",'w')

>>> myobject.write("Hey I have started
 #using files in Python\n")

41

>>> myobject.close()

On execution, write() returns the number of characters
written on to the file. Hence, 41, which is the length of
the string passed as an argument, is displayed.
Note: ‘\n’ is treated as a single character

If numeric data are to be written to a text file, the
data need to be converted into string before writing to
the file. For example:

>>>myobject=open("myfile.txt",'w')
>>> marks=58
#number 58 is converted to a string using
#str()
>>> myobject.write(str(marks))
2

>>>myobject.close()

The write() actually writes data onto a buffer. When
the close() method is executed, the contents from this
buffer are moved to the file located on the permanent
storage.

2.4.2 The writelines() method
This method is used to write multiple strings to a file.
We need to pass an iterable object like lists, tuple, etc.
containing strings to the writelines() method. Unlike

For a newly created
file, is there any
difference between
write() and append()
methods?

We can also use
the flush() method
to clear the buffer
and write contents

in buffer to the
file. This is how

programmers can
forcefully write

to the file as and
when required.

Chapter 2.indd 24 11/9/2021 5:04:45 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon 25

write(), the writelines() method does not return the
number of characters written in the file. The following
code explains the use of writelines().

>>> myobject=open("myfile.txt",'w')

>>> lines = ["Hello everyone\n", "Writing
 #multiline strings\n", "This is the
 #third line"]

>>> myobject.writelines(lines)

>>>myobject.close()

On opening myfile.txt, using notepad, its content will
appear as shown in Figure 2.1.

Figure 2.1: Contents of myfile.txt

2.5 readIng From a text FIle

We can write a program to read the contents of a file.
Before reading a file, we must make sure that the file is
opened in “r”, “r+”, “w+” or “a+” mode. There are three
ways to read the contents of a file:

2.5.1 The read() method
This method is used to read a specified number of bytes
of data from a data file. The syntax of read() method is:

file_object.read(n)

Consider the following set of statements to understand
the usage of read() method:

>>>myobject=open("myfile.txt",'r')
>>> myobject.read(10)
'Hello ever'
>>> myobject.close()

If no argument or a negative number is specified in
read(), the entire file content is read. For example,

>>> myobject=open("myfile.txt",'r')
>>> print(myobject.read())
Hello everyone
Writing multiline strings
This is the third line
>>> myobject.close()

Activity 2.3

Run the above code
by replacing
writelines() with
write() and see
what happens.

Can we pass a
tuple of numbers
as an argument to
writelines()? Will it be
written to the file or an
error will be generated?

Chapter 2.indd 25 18-Jun-21 2:29:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon26

2.5.2 The readline([n]) method
This method reads one complete line from a file where
each line terminates with a newline (\n) character. It
can also be used to read a specified number (n) of bytes
of data from a file but maximum up to the newline
character (\n). In the following example, the second
statement reads the first ten characters of the first line
of the text file and displays them on the screen.

>>> myobject=open("myfile.txt",'r')

>>> myobject.readline(10)

'Hello ever'

>>> myobject.close()

If no argument or a negative number is specified, it
reads a complete line and returns string.

>>>myobject=open("myfile.txt",'r')

>>> print (myobject.readline())

'Hello everyone\n'

To read the entire file line by line using the readline(),
we can use a loop. This process is known as looping/
iterating over a file object. It returns an empty string
when EOF is reached.

2.5.3 The readlines() method
The method reads all the lines and returns the lines
along with newline as a list of strings. The following
example uses readlines() to read data from the text file
myfile.txt.

>>> myobject=open("myfile.txt", 'r')

>>> print(myobject.readlines())

['Hello everyone\n', 'Writing multiline
strings\n', 'This is the third line']

>>> myobject.close()

As shown in the above output, when we read a
file using readlines() function, lines in the file become
members of a list, where each list element ends with a
newline character (‘\n’).

In case we want to display each word of a line
separately as an element of a list, then we can use split()
function. The following code demonstrates the use of
split() function.

>>> myobject=open("myfile.txt",'r')

>>> d=myobject.readlines()

Activity 2.4

Create a file having
multiline data and
use readline() with an
iterator to read the
contents of the
file line by line

Chapter 2.indd 26 18-Jun-21 2:29:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon 27

>>> for line in d:

 words=line.split()

 print(words)

['Hello', 'everyone']

['Writing', 'multiline', 'strings']

['This', 'is', 'the', 'third', 'line']

In the output, each string is returned as elements
of a list. However, if splitlines() is used instead of split(),
then each line is returned as element of a list, as shown
in the output below:

>>> for line in d:

 words=line.splitlines()

 print(words)

['Hello everyone']

['Writing multiline strings']

['This is the third line']

Let us now write a program that accepts a string
from the user and writes it to a text file. Thereafter,
the same program reads the text file and displays it on
the screen.

Program 2-1 Writing and reading to a text file

fobject=open("testfile.txt","w") # creating a data file
sentence=input("Enter the contents to be written in the file: ")
fobject.write(sentence) # Writing data to the file
fobject.close() # Closing a file

print("Now reading the contents of the file: ")
fobject=open("testfile.txt","r")
#looping over the file object to read the file
for str in fobject:
 print(str)
fobject.close()

In Program 2.1, the file named testfile.txt is opened
in write mode and the file handle named fobject is
returned. The string is accepted from the user and
written in the file using write(). Then the file is closed
and again opened in read mode. Data is read from the
file and displayed till the end of file is reached.

Chapter 2.indd 27 18-Jun-21 2:29:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon28

Output of Program 2-1:
>>>
 RESTART: Path_to_file\Program2-1.py
Enter the contents to be written in the file:
roll_numbers = [1, 2, 3, 4, 5, 6]
Now reading the contents of the file:
roll_numbers = [1, 2, 3, 4, 5, 6]
>>>

2.6 settIng oFFsets In a FIle

The functions that we have learnt till now are used to
access the data sequentially from a file. But if we want
to access data in a random fashion, then Python gives
us seek() and tell() functions to do so.

2.6.1 The tell() method
This function returns an integer that specifies the
current position of the file object in the file. The position
so specified is the byte position from the beginning of
the file till the current position of the file object. The
syntax of using tell() is:

file_object.tell()

2.6.2 The seek() method
This method is used to position the file object at a
particular position in a file. The syntax of seek() is:
file_object.seek(offset [, reference_point])

In the above syntax, offset is the number of bytes by
which the file object is to be moved. reference_point
indicates the starting position of the file object. That is,
with reference to which position, the offset has to be
counted. It can have any of the following values:

 0 - beginning of the file
 1 - current position of the file
 2 - end of file
By default, the value of reference_point is 0, i.e.

the offset is counted from the beginning of the file. For
example, the statement fileObject.seek(5,0) will
position the file object at 5th byte position from the
beginning of the file. The code in Program 2-2 below
demonstrates the usage of seek() and tell().

Does the seek()
function work in
the same manner
for text and binary
files?

Chapter 2.indd 28 18-Jun-21 2:29:03 PM

Reprint 2025-26

FILE HANDLING IN PYTHON 29

Program 2-2 Application of seek() and tell()

print("Learning to move the fi le object")
fi leobject=open("testfi le.txt","r+")
str=fi leobject.read()
print(str)
print("Initially, the position of the fi le object is: ",fi leobject.
tell())
fi leobject.seek(0)
print("Now the fi le object is at the beginning of the fi le:
",fi leobject.tell())
fi leobject.seek(10)
print("We are moving to 10th byte position from the beginning of
fi le")
print("The position of the fi le object is at", fi leobject.tell())
str=fi leobject.read()
print(str)

Output of Program 2-2:
>>>
 RESTART: Path_to_fi le\Program2-2.py
Learning to move the fi le object
roll_numbers = [1, 2, 3, 4, 5, 6]
Initially, the position of the fi le object is: 33
Now the fi le object is at the beginning of the fi le: 0
We are moving to 10th byte position from the beginning of fi le

The position of the fi le object is at 10
rs = [1, 2, 3, 4, 5, 6]
>>>

2.7 CREATING AND TRAVERSING A TEXT FILE

Having learnt various methods that help us to open
and close a file, read and write data in a text file, find
the position of the file object and move the file object
at a desired location, let us now perform some basic
operations on a text file. To perform these operations,
let us assume that we will be working with practice.txt.

2.7.1 Creating a file and writing data
To create a text file, we use the open() method and
provide the filename and the mode. If the file already
exists with the same name, the open() function will
behave differently depending on the mode (write or
append) used. If it is in write mode (w), then all the
existing contents of file will be lost, and an empty file
will be created with the same name. But, if the file is

Chapter 2.indd 11Chapter 2.indd 11 19-Sep-2023 10:41:47 AM19-Sep-2023 10:41:47 AM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon30

created in append mode (a), then the new data will be
written after the existing data. In both cases, if the file
does not exist, then a new empty file will be created. In
Program 2-3, a file, practice.txt is opened in write (w)
mode and three sentences are stored in it as shown in
the output screen that follows it

2.7.2 Traversing a file and displaying data
To read and display data that is stored in a text file, we
will refer to the previous example where we have created
the file practice.txt. The file will be opened in read mode
and reading will begin from the beginning of the file.

Program 2-3 To create a text file and write data in it

program to create a text file and add data

fileobject=open("practice.txt","w+")

while True:

 data= input("Enter data to save in the text file: ")

 fileobject.write(data)

 ans=input("Do you wish to enter more data?(y/n): ")

 if ans=='n': break

fileobject.close()

Output of Program 2-3:
>>>
 RESTART: Path_to_file\Program2-3.py
Enter data to save in the text file: I am interested to learn about
Computer Science
Do you wish to enter more data?(y/n): y
Enter data to save in the text file: Python is easy to learn
Do you wish to enter more data?(y/n): n
>>>

Program 2-4 To display data from a text file

fileobject=open("practice.txt","r")

str = fileobject.readline()

while str:

 print(str)

 str=fileobject.readline()

fileobject.close()

In Program 2-4, the readline() is used in the while
loop to read the data line by line from the text file. The
lines are displayed using the print(). As the end of file
is reached, the readline() will return an empty string.
Finally, the file is closed using the close().

Chapter 2.indd 30 18-Jun-21 2:29:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon 31

Till now, we have been creating separate programs
for writing data to a file and for reading the file. Now
let us create one single program to read and write data
using a single file object. Since both the operations have
to be performed using a single file object, the file will be
opened in w+ mode.

Output of Program 2-4:
>>>
I am interested to learn about Computer SciencePython is easy to learn

Program 2-5 To perform reading and writing operation in a
text file

fileobject=open("report.txt", "w+")
print ("WRITING DATA IN THE FILE")
print() # to display a blank line
while True:
 line= input("Enter a sentence ")
 fileobject.write(line)
 fileobject.write('\n')
 choice=input("Do you wish to enter more data? (y/n): ")
 if choice in ('n','N'): break
print("The byte position of file object is ",fileobject.tell())
fileobject.seek(0) #places file object at beginning of file
print()
print("READING DATA FROM THE FILE")
str=fileobject.read()
print(str)
fileobject.close()

In Program 2-5, the file will be read till the time end
of file is not reached and the output as shown in below
is displayed.

Output of Program 2-5:
>>>
 RESTART: Path_to_file\Program2-5.py
WRITING DATA IN THE FILE

Enter a sentence I am a student of class XII
Do you wish to enter more data? (y/n): y
Enter a sentence my school contact number is 4390xxx8
Do you wish to enter more data? (y/n): n
The byte position of file object is 67

READING DATA FROM THE FILE
I am a student of class XII
my school contact number is 4390xxx8
>>>

Chapter 2.indd 31 07-Sep-21 4:27:22 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon32

2.8 the pIckle module

We know that Python considers everything as an object.
So, all data types including list, tuple, dictionary, etc.
are also considered as objects. During execution of
a program, we may require to store current state of
variables so that we can retrieve them later to its present
state. Suppose you are playing a video game, and after
some time, you want to close it. So, the program should
be able to store the current state of the game, including
current level/stage, your score, etc. as a Python object.
Likewise, you may like to store a Python dictionary as
an object, to be able to retrieve later. To save any object
structure along with data, Python provides a module
called Pickle. The module Pickle is used for serializing
and de-serializing any Python object structure. Pickling
is a method of preserving food items by placing them
in some solution, which increases the shelf life. In
other words, it is a method to store food items for later
consumption.

Serialization is the process of transforming data or
an object in memory (RAM) to a stream of bytes called
byte streams. These byte streams in a binary file can
then be stored in a disk or in a database or sent through
a network. Serialization process is also called pickling.

De-serialization or unpickling is the inverse of
pickling process where a byte stream is converted back
to Python object.

The pickle module deals with binary files. Here, data
are not written but dumped and similarly, data are not
read but loaded. The Pickle Module must be imported
to load and dump data. The pickle module provides two
methods - dump() and load() to work with binary files
for pickling and unpickling, respectively.

2.8.1 The dump() method
This method is used to convert (pickling) Python objects
for writing data in a binary file. The file in which data
are to be dumped, needs to be opened in binary write
mode (wb).

Syntax of dump() is as follows:
dump(data_object, file_object)

where data_object is the object that has to be
dumped to the file with the file handle named file_

notes

Chapter 2.indd 32 18-Jun-21 2:29:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon 33

Program 2-6 Pickling data in Python

import pickle

listvalues=[1,"Geetika",'F', 26]

fileobject=open("mybinary.dat", "wb")

pickle.dump(listvalues,fileobject)

fileobject.close()

2.8.2 The load() method
This method is used to load (unpickling) data from a
binary file. The file to be loaded is opened in binary read
(rb) mode. Syntax of load() is as follows:

Store_object = load(file_object)
Here, the pickled Python object is loaded from the

file having a file handle named file_object and is
stored in a new file handle called store_object. The
program 2-7 demonstrates how to read data from the
file mybinary.dat using the load().
Program 2-7 Unpickling data in Python

import pickle
print("The data that were stored in file are: ")
fileobject=open("mybinary.dat","rb")
objectvar=pickle.load(fileobject)
fileobject.close()
print(objectvar)

Output of Program 2-7:
>>>
 RESTART: Path_to_file\Program2-7.py
The data that were stored in file are:
[1, 'Geetika', 'F', 26]
>>>

2.8.3 File handling using pickle module
As we read and write data in a text file, similarly we
will be adding and displaying data for a binary file.
Program 2-8 accepts a record of an employee from the
user and appends it in the binary file tv. Thereafter, the
records are read from the binary file and displayed on
the screen using the same object. The user may enter

object. For example, Program 2-6 writes the record
of a student (roll_no, name, gender and marks) in the
binary file named mybinary.dat using the dump(). We
need to close the file after pickling.

notes

Chapter 2.indd 33 18-Jun-21 2:29:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon34

Program 2-8	 To	perform	basic	operations	on	a	binary	file	using	pickle	module

Program to write and read employee records in a binary file
import pickle
print("WORKING WITH BINARY FILES")
bfile=open("empfile.dat","ab")
recno=1
print ("Enter Records of Employees")
print()
#taking data from user and dumping in the file as list object
while True:
 print("RECORD No.", recno)
 eno=int(input("\tEmployee number : "))
 ename=input("\tEmployee Name : ")
 ebasic=int(input("\tBasic Salary : "))
 allow=int(input("\tAllowances : "))
 totsal=ebasic+allow
 print("\tTOTAL SALARY : ", totsal)
 edata=[eno,ename,ebasic,allow,totsal]
 pickle.dump(edata,bfile)
 ans=input("Do you wish to enter more records (y/n)? ")
 recno=recno+1
 if ans.lower()=='n':
 print("Record entry OVER ")
 print()
 break
retrieving the size of file
print("Size of binary file (in bytes):",bfile.tell())
bfile.close()
Reading the employee records from the file using load() module
print("Now reading the employee records from the file")
print()
readrec=1
try:
 with open("empfile.dat","rb") as bfile:
 while True:
 edata=pickle.load(bfile)
 print("Record Number : ",readrec)
 print(edata)
 readrec=readrec+1
except EOFError:
 pass
bfile.close()

as	 many	 records	 as	 they	 wish	 to.	 The	 program	 also	
displays	the	size	of	binary	files	before	starting	with	the	
reading	process.

Chapter 2.indd 34 07-Sep-21 4:27:36 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon 35

Output of Program 2-8:
>>>
 RESTART: Path_to_file\Program2-8.py
WORKING WITH BINARY FILES
Enter Records of Employees

RECORD No. 1
 Employee number : 11
 Employee Name : D N Ravi
 Basic Salary : 32600
 Allowances : 4400
 TOTAL SALARY : 37000
Do you wish to enter more records (y/n)? y
RECORD No. 2
 Employee number : 12
 Employee Name : Farida Ahmed
 Basic Salary : 38250
 Allowances : 5300
 TOTAL SALARY : 43550
Do you wish to enter more records (y/n)? n
Record entry OVER

Size of binary file (in bytes): 216
Now reading the employee records from the file

Record Number : 1
[11, 'D N Ravi', 32600, 4400, 37000]
Record Number : 2
[12, 'Farida Ahmed', 38250, 5300, 43550]
>>>

As each employee record is stored as a list in the
file empfile.dat, hence while reading the file, a list is
displayed showing record of each employee. Notice that
in Program 2-8, we have also used try.. except block to
handle the end-of-file exception.

summary

• A file is a named location on a secondary storage
media where data are permanently stored for
later access.

• A text file contains only textual information
consisting of alphabets, numbers and other

notes

Chapter 2.indd 35 18-Jun-21 2:29:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon36

special symbols. Such files are stored with
extensions like .txt, .py, .c, .csv, .html, etc. Each
byte of a text file represents a character.

• Each line of a text file is stored as a sequence
of ASCII equivalent of the characters and is
terminated by a special character, called the End
of Line (EOL).

• Binary file consists of data stored as a stream
of bytes.

• open() method is used to open a file in Python and
it returns a file object called file handle. The file
handle is used to transfer data to and from the file
by calling the functions defined in the Python’s
io module.

• close() method is used to close the file. While
closing a file, the system frees up all the resources
like processor and memory allocated to it.

• write() method takes a string as an argument
and writes it to the text file.

• writelines() method is used to write multiple
strings to a file. We need to pass an iterable
object like lists, tuple etc. containing strings to
writelines() method.

• read([n]) method is used to read a specified
number of bytes (n) of data from a data file.

• readline([n]) method reads one complete line
from a file where lines are ending with a newline
(\n). It can also be used to read a specified number
(n) of bytes of data from a file but maximum up to
the newline character (\n).

• readlines() method reads all the lines and
returns the lines along with newline character, as
a list of strings.

• tell() method returns an integer that specifies
the current position of the file object. The position
so specified is the byte position from the beginning
of the file till the current position of the file object.

• seek()method is used to position the file object
at a particular position in a file.

notes

Chapter 2.indd 36 18-Jun-21 2:29:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon 37

ExErcisE
1. Differentiate between:

a) text file and binary file
b) readline() and readlines()
c) write() and writelines()

2. Write the use and syntax for the following methods:
a) open()
b) read()
c) seek()
d) dump()

3. Write the file mode that will be used for opening the
following files. Also, write the Python statements to open
the following files:
a) a text file “example.txt” in both read and write mode
b) a binary file “bfile.dat” in write mode
c) a text file “try.txt” in append and read mode
d) a binary file “btry.dat” in read only mode.

4. Why is it advised to close a file after we are done with
the read and write operations? What will happen if we do
not close it? Will some error message be flashed?

5. What is the difference between the following set of
statements (a) and (b):
a) P = open(“practice.txt”,”r”)

P.read(10)
b) with open(“practice.txt”, “r”) as P:

 x = P.read()

6. Write a command(s) to write the following lines to the
text file named hello.txt. Assume that the file is opened
in append mode.

“ Welcome my class”
“It is a fun place”
“You will learn and play”

• Pickling is the process by which a Python object is
converted to a byte stream.

• dump() method is used to write the objects in a
binary file.

• load() method is used to read data from a binary
file.

NotEs

Chapter 2.indd 37 11/9/2021 5:07:45 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii File Handling in pytHon38

7. Write a Python program to open the file hello.txt used in
question no 6 in read mode to display its contents. What
will be the difference if the file was opened in write mode
instead of append mode?

8. Write a program to accept string/sentences from the
user till the user enters “END” to. Save the data in a text
file and then display only those sentences which begin
with an uppercase alphabet.

9. Define pickling in Python. Explain serialization and
deserialization of Python object.

10. Write a program to enter the following records in a binary
file:

Item No integer
Item_Name string
Qty integer
Price float

Number of records to be entered should be accepted
from the user. Read the file to display the records in the
following format:

Item No:
Item Name :
Quantity:
Price per item:
Amount: (to be calculated as Price * Qty)

notes

Chapter 2.indd 38 18-Jun-21 2:29:03 PM

Reprint 2025-26

	lecs1ps
	lecs101
	lecs102
	lecs103
	lecs104
	lecs105
	lecs106
	lecs107
	lecs108
	lecs109
	lecs110
	lecs111
	lecs112
	lecs113

